
TECHNICAL REPORT

IST-MBT-2012-01

The Argos Manual

for Argos version: 0.39

Stefan Tiran

stiran@ist.tugraz.at

March 2012

Institute for Software Technology (IST)
Graz University of Technology

A-8010 Graz, Austria

Contents

1 Introduction 3

2 How To Run Argos 4
2.1 Program Invocation . 4
2.2 Options and Arguments . 4
2.3 Examples . 5

3 OOAS Language 5
3.1 Base structure . 5
3.2 The Type Definition Block . 6

3.2.1 Defining Integer Types . 6
3.2.2 Defining Enum Types . 7
3.2.3 Defining Complex Types (Lists, Tuples) 7
3.2.4 Defining Classes . 7

3.3 Structure of Classes . 8
3.3.1 Inheritance . 8
3.3.2 Defining Variables (Attributes) . 8
3.3.3 Creating Objects . 8
3.3.4 Defining Methods . 8
3.3.5 Defining Actions . 9

3.4 Composition . 10
3.4.1 Sequential Composition . 10
3.4.2 Non-deterministic Choice . 10
3.4.3 Prioritizing Composition . 10

3.5 Expressions . 11
3.5.1 Conditional Assignment . 11
3.5.2 Fold . 11
3.5.3 Quantifier Expressions . 11
3.5.4 List Comprehension . 11
3.5.5 Tuple Expressions . 12
3.5.6 Access Expressions . 12
3.5.7 Cast Expressions . 13

3.6 Operators . 13
3.6.1 Numeric Operators . 13
3.6.2 Logical Operators . 13
3.6.3 Comparison Operators . 13
3.6.4 List Operators (Head, Tail, Length, Concatenation) 14

3.7 The Dood Block . 15
3.8 The System Assembling Block . 16
3.9 Comments . 17
3.10 Formal Syntax . 17

2

4 Incomplete Features 19
4.1 Sequential Block Expression . 19
4.2 String . 19

5 CADP Target 19
5.1 The Argos CADP-Target . 19
5.2 Generating BCG . 20
5.3 Animator . 20

6 Alarm System 20
6.1 Overview . 20
6.2 Requirements . 21
6.3 State Chart . 21
6.4 Object-Oriented Action System . 22

6.4.1 Interface . 22
6.4.2 Time Handling . 22
6.4.3 Protocol Layer . 22
6.4.4 Non-determinism . 22
6.4.5 Code . 23

6.5 Labeled Transition System . 26

List of Figures

1 HelloWorld . 6
2 Creating an object . 9
3 Defining sum of all list elements using the fold meta function 12
4 Prime number calculation . 13
5 Tuple Example . 14
6 Cast Example . 15
7 Stack . 16
8 State Chart of Car Alarm System . 21
9 Labeled Transition System . 27

1 Introduction

Argos is a compiler for Object-Oriented Action Systems (OOAS). It has been developed
by Willibald Krenn from Graz University of Technology within the MOGENTES project.

Its main target is producing Action Systems in the proprietary format that Ulysses
can process. Ulysses is an ioco-checker written by Harald Brandl also within the MO-
GENTES project.

3

2 How To Run Argos

Argos is a .NET based command line program. To run it you need either the .NET
Framework or mono (http://www.mono-project.com).

2.1 Program Invocation

Since Argos is a command line tool you need to open a command line prompt (using
Windows) resp. a shell (using a UNIX-like system).

When using Windows change to the Argos directory and simply run argos.exe:
c:\Argos \> argos

When using a UNIX-like system run mono with argos.exe as parameter:
$ mono argos.exe

In both cases one should now see this welcome screen:

>> Mogentes OO-Action System Parser <<

Version: 0.39 (16471)

Grammar-Version: 0.06

Usage: argos [options] <oo-actionsystem-file>

Options:

-o<name> ... write output to file <name> (overwrites!)

-n<name> ... use namespace <name> (default: as)

-d<depth> ... set max. search depth (default: 35)

-q ... "quiet" mode: doesn’t print Warnings to console

-a ... create pseudo-action system code

-p ... create prolog code

-c ... create CADP implicit LTS

2.2 Options and Arguments

As can be seen in the welcome screen for translating Action Systems the last parameter
has to be the OOAS-File you want to convert, every other options has to come before.

If no other option is given, Argos will translate the given OOAS-File to C#-Pseudo-
Code and print it out on the screen. Since this most probably won’t be something you
will find extremely useful, you should at least specify an output-file and the desired
language.

For specifying the output-file use option -o followed by the file name resp. the relative
path of the file you want to create. There should be NO space between -o and the file
name!

For specifying the language include option -c for creating C-Code for the CADP-
Toolbox resp. option -p for creating Prolog-Code for use with the Ulysses tool.

4

When creating Prolog-Code the following options are important:

-n With this option one can specify the namespace within the Prolog-File; the only
meaningful use of this option is -nasm for letting the Ulysses tool know, that this
file represents the mutant rather then the original file.

-d With this option one can specify the max. depth, to which the Ulysses tool will
search for differences. Please note that this option has to be followed by a number
WITHOUT a space before! The default value is 35, so leaving out this option is
equivalent to writing -d35.

2.3 Examples

To illustrate the use of the options, we hereby provide the following examples:

– Translate an original OOAS specification original.ooas to a Prolog file
original.pl for the Ulysses tool with max. search depth 42:

argos.exe -p -d42 -ooriginal.pl original.ooas

– Translate a mutated OOAS specification mutant.ooas to a Prolog file mutant.pl
for the Ulysses tool with max. search depth 42:

argos.exe -p -d42 -nasm -omutant.pl mutant.ooas

– Translate OOAS specification original.ooas to a C file original.c for the
use with the CADP toolbox:

argos.exe -c -ooriginal.c original.ooas

3 OOAS Language

The Argos tool will only work if the given file is well formed according to the language
that is described in this section. The language is based on the language proposed in [2]
but only a subset of features is actually implemented.

3.1 Base structure

To illustrate the base structure of an OOAS file let us consider the simple Hello World
program in Figure 1.

Every OOAS consists of two different regions: The type definition block and the
system assembling block. In the HelloWorld system the type definition block consists of
Lines 1 - 13 and the system assembling consists of Lines 14 and 15.

Let us now discuss the system Line by Line: Line 1 just consists of the keyword types

stating that here begins the type definition block. In Line 2 a class called Greeter is
defined. The keyword autocons states that one instance of the class will automatically
be created at system start. This instance is called the “root object”. The symbols in
Line 3 and 13 state the begin and the end of the class definition. In Lines 4 and 5 there is

5

1 types
2 Greeter = autocons system
3 | [
4 var
5 done : bool = fa l se
6 actions
7 obs HelloWorld = requires done = fa l se :
8 done := true
9 end

10 do
11 HelloWorld
12 od
13] |
14 system
15 Greeter

Figure 1: HelloWorld

a variable definition block. Even though this block is not formally necessary for Argos to
compile a file, Argos will not create a valid prolog file if this block is missing. In Lines 6 -
9 there is the action block consisting of the action HelloWorld. The keyword obs states
that this action is observable rather then controllable (keyword: ctr) or internal (no
keyword). The keyword requires states the beginning of the guard, which enables the
action. The body of this action consists of Lines 8 and 9. Line 8 contains an assignment,
the keyword end in Line 9 marks the end of the action. Lines 10 - 12 contains the
so-called do od-block . The do od-block is described in Section 3.7.

As already mentioned, Lines 14 + 15 contain the system assembling block. In this
block the system is composed of its classes. Since this example system only contains of
one class, the block is quite simple and needs no further explanation.

3.2 The Type Definition Block

The type definition block has two purposes: As we have already seen it can be used for
defining the classes of which the system consists of. However it can also be used for
creating named types which is similar to the use of type-def in C.

The latter use is quite important as OOAS has a very strict typing system. For
example if you want to define a variable as integer, you also have to define the range of
the values. This is due to the fact that too wide ranges can lead to enormous efficiency
problems when simulating the model.

3.2.1 Defining Integer Types

Integer types can be defined by the lower and upper range.
Consider you want to define a type MyInt that can contain values between 0 and 31,

then you can write

MyInt = int [0..31];

6

Please note that the semicolon has to be placed if and only if this is not the last
definition.

3.2.2 Defining Enum Types

Enums can be defined by enumerating the possible values and optionally assigning them
integer values. If integer values are explicitly assigned, enum types can be casted to
integer types.

Consider you want to define an enum type Color that can contain the values red,
green, blue, yellow and black, then you can write:

Color = {red, green, blue, yellow, black};

The possibility to explicitly assign integer values is especially useful when dealing with
equivalent classes of integers. Consider you need an integer type that can only contain
small number of different values but these values define a range with ”holes” rather then
a complete one.

So in case you need a type that can hold the values 1, 42 and 1337 you can write

CoolValueSet = {CoolValue1 = 1, CoolValue2 = 42, CoolValue3 = 1337};

3.2.3 Defining Complex Types (Lists, Tuples)

Additional to the former so-called simple types the OOAS language also supports so-
called complex types. These are: lists and tuples.

A list is defined by the number and the type of its elements.
An example for the former variant would be:

MyList = list [42] of char;

A tuple is defined by the types of its elements. Unlike a list the types can differ among
the different elements.

An example would be:

MyTuple = (MyInt, SmallInt);

Even though maps and qualitative reasoning types would be specified by the OOAS
language, Argos does not support them yet.

3.2.4 Defining Classes

In the OOAS language the definition of a class (ooActionSystem) does not differ from
the definition of any other type.

7

3.3 Structure of Classes

3.3.1 Inheritance

As common in Object-Oriented languages, classes can be derived from other classes and
inherit their behavior. A sample class Desc inheriting from a class base could look like
this:

Desc = system (base)

|[

]|

3.3.2 Defining Variables (Attributes)

Variables store the information of the state of an object. An alternative name of variables
often used in error messages is “attributes”. Variables can be static and have to be
initialized with a valid value. For objects there is a predefined object nil. There is also
a self-reference called self.

The definition of a variable can look like this:

done : bool = false;

Please note that the semicolon has to be placed if and only if this is not the last
definition.

3.3.3 Creating Objects

The only place where an object can be created is in the variable definition block. Line
5 in Figure 2 demonstrates how a variable with the name myOtherClassObject can be
initialized with an object with the name OtherClassObject of a class OtherClass.

For details on the System Assembling Block (Lines 23 and 24) see Section 3.8.

3.3.4 Defining Methods

Methods can be used for defining subroutines. Methods can have parameters, variables
and a return value. Methods can be called from actions and from other methods, but
not recursively - neither directly nor indirectly.

The body of a method isn’t any different from the body of an action and therefore
described in Section 3.3.5.

A sample method, that returns the bigger of two values could look like this:

maxValue(a : MyInt, b : MyInt) : MyInt =

result := if (a > b) then a else b end

end;

8

1 types
2 RootClass = autocons system
3 | [
4 var
5 myOtherClassObject : OtherClass = new(OtherClass , ” OtherClassObject ”) ;
6 i n i t i a l i z e d : bool = fa l se
7 actions
8 obs i n i t = requires i n i t i a l i z e d = fa l se : i n i t i a l i z e d := true end
9 do

10 i n i t ()
11 od
12] | ;
13 OtherClass = system
14 | [
15 var
16 i n i t i a l i z e d : bool = fa l se
17 actions
18 obs i n i t = requires i n i t i a l i z e d = fa l se : i n i t i a l i z e d := true end
19 do
20 i n i t ()
21 od
22] |
23 system
24 RootClass [] OtherClass

Figure 2: Creating an object

Returning a value is done by assigning it to the variable result. For a list of possible
expressions we refer to Section 3.5.

One important aspect of methods is their pureness. A method is pure iff there is no
assignment to a variable other than result. This property is checked on compile time.
Only if a method is pure it can be used in a guard or in a list comprehension.

3.3.5 Defining Actions

Named actions consist of an optional parameter list, a variable definition block and a
body but they lack a return value. Named actions can only be called in the so-called do
od-block .

A named action can be controllable (keyword ctr), observable (keyword obs) or in-
ternal (no keyword).

The definition of local variables does not differ from any other variable definition so
we refer to Section 3.3.2.

The body of a named action can consist of one or more basic actions. Every action
has a guard which “enables” it. The general form of a guard is requires p : S1 end

where p is the condition and S1 is the action. The condition can be any expression that
doesn’t involve the calling of a non-pure method or a non-pure assignment.

For further details about expressions see Section 3.5!
Basic actions can be the built-in action skip, single or multiple assignment or a

sequential composition of two other actions. For details on the composition we refer to
Section 3.4.

9

The built-in action skip doesn’t do anything at all. Sometimes this is called identity
assignment.

Single assignment has the simple form v := e where v is a variable and e is an
expression.

However you can also assign multiple expressions to multiple variables by separating
them with commas.

So if done and multi are both variables of type bool, then you can write:

done, multi := true, true

3.4 Composition

3.4.1 Sequential Composition

The easiest way of composing two actions is the sequential composition. It has the
general form A ; B where A and B are both actions and has the meaning that iff A and
B are enabled, first action A is executed and then action B is executed. Note that it is
not necessary for B to be enabled before A. It is also possible that B becomes enabled
because of A.

Please note that despite of the apparent resemblance with the semicolon as marker
of the end of a line in many imperative programming languages there are two very
important differences:

The first difference is that since it is a composition operator, there must not be a
semicolon after the last action. This difference seems to be more on a syntactical level,
but should also warn about the other very important difference:

The second difference is that since actions have guards, no action of a sequence block
is executed, if a single action is not enabled. This also means that an action can hinder
actions to be executed, which were called before!

3.4.2 Non-deterministic Choice

The counterpart of the “sequential composition” is the so called “non-deterministic
choice”.

The general form of a non-deterministic choice is A [] B where A and B are both
actions and the meaning is that either A or B is executed. However an action can only
be chosen if it is enabled. According to the theory of action systems an action has to be
chosen if it is aborting. However there is no abort feature implemented yet.

3.4.3 Prioritizing Composition

The “prioritizing composition” is rather an abbreviation than an actual new type of
composition.

The general form is A // B and it means that if A is enabled, it is chosen and
otherwise B is chosen.

10

3.5 Expressions

Expressions can be evaluated and their values can be assigned to variables.

3.5.1 Conditional Assignment

Conditional Assignments are expressions. They can not be used for branching the control
sequence. Branching the control sequence has to be done by using guards and non-
deterministic choice.

A conditional assignment can look like this:

c := if (a > b) then a else b end

3.5.2 Fold

For the purpose of iterating through a list in OOAS fold is used. Fold is a higher-order
function well known from the functional programming paradigm.

In the OOAS language both right fold and left fold are defined. The symbol for the
former is :>: whereas the symbol for the latter is :<:. However in Argos only right fold
is implemented.

The general form of a fold expression is method :: (init expression) :>: (list

expression) where method is the name of the method, init expression is the value
for the last parameter of the method for the first call. For any other call the result of the
former call is used instead. Finally list expression is the expression that evaluates to
the list to be iterated.

Figure 3 shows how to define a method Sum using a method Add and the fold operator.

3.5.3 Quantifier Expressions

The OOAS language allows to use the quantifiers forall and exists. The resulting
expressions will evaluate to Boolean values. The general form is (quantifier : Type

: (logical sentence)).
For example an existential quantification can look like this: (exists i : LengthInt

: (primes[i] = a)).

3.5.4 List Comprehension

The OOAS language allows to construct new list expressions based on existing lists by
using the set-builder notation. These expressions can be assigned to list variables at any
time after the initialization, but not in the declaration.

The general form of a list comprehension is:
list := [x | var x : Type & (condition)], where Type is the type of the list

elements and condition is a logical sentence which determines whether a value should
be inserted to the list.

The example in Figure 4 illustrates both Quantifier Expressions and List Comprehen-
sion by computing prime numbers.

11

1 types
2 MyInt = in t [0 . . 4 2] ;
3 Smal l Int = in t [0 . . 3] ;
4 MyTuple = (MyInt , Smal l Int) ;
5 Sum = autocons system
6 | [
7 var
8 my l i s t : l i s t [4] of Smal l Int = [5 , 5 , 5 , 5]
9 methods

10 add (a : MyInt , b : Smal l Int) : MyInt =
11 requires true :
12 r e s u l t := a + b
13 end
14 end ;
15 sum(Xs : l i s t [4] of Smal l Int) : MyInt =
16 requires true :
17 r e s u l t := add : : (0) :> : (Xs)
18 end
19 end
20 actions
21 obs Sum(a : MyInt) =
22 requires a = sum(my l i s t) :
23 sk ip
24 end
25 do
26 var A : MyInt : Sum(A)
27 od
28] |
29 system
30 Sum

Figure 3: Defining sum of all list elements using the fold meta function

3.5.5 Tuple Expressions

The general form of an expression that evaluates to a tuple is:

TupleType(v_1,...,v_n)

where TupleType is the type of the tuple and v 1,...,v n are the values.
An example for using Tuples can be found in Figure 5

3.5.6 Access Expressions

Access Expression is the general term for the access of elements in a list or tuple, call of
method or access to an attribute of an object.

Accessing elements of a list is done by using the index operator [] well known from
accessing arrays in imperative languages like C. The index starts with 0.

The index operator [] can also be used to access a specific element of a tuple. This
feature is illustrated in the guard of action change2 in Figure 5. However this feature is
not implemented in the left hand side of an assignment, e. g. it is not possible to write
theTuple[0] := 1.

12

1 types
2 MyInt = in t [2 . . 1 0 0] ;
3 LengthInt = in t [0 . . 4 0] ;
4 Primes = autocons system
5 | [
6 var
7 i n i t i a l i z e d : bool = fa l se ;
8 primes : l i s t [40] of MyInt = [3]
9 actions

10 obs i n i t = requires i n i t i a l i z e d = fa l se :
11 primes := [x | var x : MyInt & (f o r a l l tmp : MyInt :
12 (tmp < x => (x mod tmp <> 0)))] ;
13 i n i t i a l i z e d := true end ;
14

15 obs Prime (a : MyInt) =
16 requires (e x i s t s i : LengthInt : (primes [i] = a)) :
17 sk ip
18 end
19

20 do
21 i n i t () // var A : MyInt : Prime (A)
22 od
23] |
24 system
25 Primes

Figure 4: Prime number calculation

3.5.7 Cast Expressions

When dealing with a class hierarchy it is possibly to use an object of a sub class instead
of an object of its super class. This is called upcast and done implicitly in most contexts.
However, when concatenating two lists it has to be done explicitly using the operator as
as illustrated in Line 10 in Figure 6.

3.6 Operators

3.6.1 Numeric Operators

The numeric operators are + for adding two numbers of an integer or float type, - for
subtracting, * for multiplying. The operator for the division of two numbers of a float
type is /. For the division of two numbers of an integer type there are operators div for
the quotient and mod for the remainder.

3.6.2 Logical Operators

The logical operators are inspired by VDM and written and for logical and, or for logical
or, not for negation, => for implication, and <=> for bi-implication.

3.6.3 Comparison Operators

For comparing two values of the same type there are = for equality

13

1 types
2 MyInt = in t [0 . . 4 2] ;
3 MyTuple = (MyInt , MyInt) ;
4 TupleDemo = autocons system
5 | [
6 var
7 theTuple : MyTuple = MyTuple (1 , 1)
8 actions
9 ctr change1 = requires theTuple = MyTuple (1 , 1) :

10 theTuple := MyTuple (1 , 2)
11 end ;
12 ctr change2 = requires theTuple [1] = 2 :
13 theTuple := MyTuple (1 , 3)
14 end
15 do
16 change1 [] change2
17 od
18] |
19 system
20 TupleDemo

Figure 5: Tuple Example

and <> for inequality.
Values of integer and float types can also be compared with > for greater, >= for greater

or equal, < for less, and <= for less or equal.

3.6.4 List Operators (Head, Tail, Length, Concatenation)

The OOAS language provides several basic list operators that make it easy to use lists.
The first operator is hd which is short for head. This operator returns the first element

of a list. Therefore if my list is a list, then hd my list is equivalent to my list[0].
The counterpart to head is tail, which returns the list without the first element. In

OOAS the operator token is tl. So if you want to remove the first element from a list
my stack you can write my stack := tl my stack.

The next important operation is determining how many elements are currently in a
list, which is the so-called length of a list. In OOAS this operator is written len. For
example if an action should only be enabled if there are less than 10 elements in the list
my stack you can write requires len my stack < 10.

The last operation is creating a list that contains all the elements of two given lists,
which is called concatenation. The operator is written ^. If for instance you want to
append an element a to a list my stack, you can write

my_stack := [a] ^ my_stack

The example in Figure 7 illustrates how these operators can be used to build a stack.

14

1 types
2 Class1 = autocons system
3 | [
4 var
5 O2 : Class2 = new (Class2) ;
6 O3 : Class3 = new (Class3) ;
7 OL : l i s t [2] of Class2 = [n i l]
8 actions
9 ctr f i l l = requires true :

10 OL := [O2] ˆ [O3 as Class2]
11 end
12 do
13 f i l l
14 od
15] | ;
16 Class2 = system
17 | [
18] | ;
19 Class3 = system (Class2)
20 | [
21] |
22 system
23 Class1

Figure 6: Cast Example

3.7 The Dood Block

The actual behavior of an action system is defined in the so-called do od-block . The do
od-block was inspired by Dijkstra’s guarded iteration statement. The canonical form
of a do od-block is to list all named actions of the class and connect them using the
[] operator. In this case in each iteration an action is available iff its guard evaluates
to true and the system terminates iff no action is enabled.

However, in OOAS actions are neither limited to named actions nor is the non-
deterministic choice the only possible operator.

Instead, all operators described in Section 3.4 are available as well as the built-in
action skip and so-called anonymous actions. An anonymous action is a guard followed
by assignments, methods or built-in action skip. In literature anonymous actions are
often referred to as guarded commands.

If (named) actions are parametrized, enumeration can be used as generalization of the
non-deterministic choice over the values of a data type.

For instance given a data type SmallInt = int[0..3] and a named action doSomething

(a : SmallInt) it is possible to write

do

var : A : SmallInt : doSomething(A)

od

as abbreviation for

do

15

1 types
2 Smal l Int = in t [0 . . 3] ;
3 Stack = autocons system
4 | [
5 var
6 my stack : l i s t [1 0] of Smal l Int = [0]
7 actions
8 obs top (a : Smal l Int) = requires (a = hd my stack) :
9 sk ip

10 end ;
11 obs pop = requires (len my stack > 0) :
12 my stack := t l my stack
13 end ;
14 obs push (a : Smal l Int) = requires len my stack < 10 :
15 my stack := [a] ˆ my stack
16 end
17

18 do
19 var A : Smal l Int : push (A) [] pop () [] var B : Smal l Int : top (B)
20 od
21] |
22 system
23 Stack

Figure 7: Stack

doSomething(0) [] doSomething(1) [] doSomething(2) [] doSomething(3)

od

3.8 The System Assembling Block

In the System Assembling Block the system is assembled by its classes. All the classes
used by the system are connected either by the non-deterministic choice operator [] or
by the prioritized composition operator //. This feature allows the user to manually set
the priority among the classes.

16

3.9 Comments

The OOAS language supports single line comments. Comments start with a # symbol.

3.10 Formal Syntax

The following EBNF grammar defines the syntax of an Object-Oriented action system
(OOAS). Features that are not implemented at all are left out. However there are some
features that are not completely implemented and do produce code that doesn’t work.
These features are stroked out.

OOAS := [’consts’ ConstList] ’types’ TypeList ’system’ ASTypeComp
ConstList := NamedConst { ’;’ NamedConst }
NamedConst := Identifier ’=’ Exp
TypeList := NamedType { ’;’ NamedType }
NamedType := Identifier ’=’ (ComplexType | OOActionSystem)
ComplexType := (’list’ ’[’ (Num | Identifier) ’]’ ’of’ ComplexType)

| (’[’ Identifier { ’,’ Identifier } ’]’)
| (’(’ ComplexType { ’,’ ComplexType } ’)’)
| SimpleType

SimpleType := ’bool’
| (’int’ ’[’ (Num | Identifier) ’..’ (Num | Identifier) ’]’)
| (’float’ ’[’ (FloatNum | Identifier) ’..’ (FloatNum | Identifier) ’]’)
| ’char’
| ’{’ Identifier [’=’ Num] { ’, Identifier [’=’ Num] } ’}’
| Identifier

OOActionSystem := [’autocons’] ’system’ [Identifier]
’|[’ [’var’ AttrList] [’methods’ MethodList]
[’actions’ NamedActionList] [’do’ [ActionBlock] ’od’] ’]|’

AttrList := Attr { ’;’ Attr }
Attr := [’static’] [’obs’ | ’ctr’] Identifier ’:’ ComplexType [’=’ Exp]
MethodList := Method { ’;’ Method }
Method := Identifier [’(’ MethodParamList ’)’] [’:’ ComplexType] ’=’

[’var’ LocalActionVars ’begin’] ActionBody ’end’
MethodParamList := Identifier ’:’ ComplexType { ’,’ Identifier ’:’ ComplexType }
NamedActionList := NamedAction { ’;’ NamedAction }
NamedAction := [’obs’ | ’ctr’] Identifier [’(’ MethodParamList ’)’]

[’:’ ComplexType] ’=’ [’var’ LocalActionVars] DiscreteActionBody
LocalActionVars := Identifier ’:’ ComplexType { ’;’ Identifier ’:’ ComplexType}
DiscreteActionBody := ’requires’ Exp ’:’ ActionBody ’end’
Exp := AtomExpression BinOperator AtomExpression
AtomExpression := ([OpUn] (Reference | Constant | InitComplexType | QuantExp

| ’(’ Exp ’)’ { ’.’ Identifier } [AccessExp])
[’as’ Identifier])

17

| (’if’ Exp ’then’ Exp ’else’ Exp ’end’)
OpUn := ’-’ | ’not’ | ’hd’ | ’tl’ | ’len’
Constant := (’true’) | (’false’) | (’nil’) | (’self’) | (FloatNum) | (Num) |

(((((
(((StringLiteral)

InitComplexType := InitListType | (’new’ ’(’ Identifier [’,’ StringLiteral] ’)’)
InitListType := ’[’ Exp [ListComp | { ’, Exp’}] ’]’
ListComp := ’|’ ’var’ Identifier ’:’ ComplexType { ; Identifier ComplexType } ’&’ Exp
QuantExp := (’forall’ | ’exists’) Identifier ’:’ SimpleType

{ ’,’ Identifier ’: SimpleType’ } ’:’ ’(’ Exp ’)’
ActionBody := ActionBodyParallel ’//’ ActionBodyParallel
ActionBodyParallel := ActionBodySeq ’[]’ ActionBodySeq
ActionBodySeq := ActionBodyParen ’;’ ActionBodyParen
ActionBodyParen := (’(’ ActionBody ’)’) | (Statement)
Statement := (’skip’) | (Reference { ’,’ Reference } ’:=’ Exp { ’,’ Exp})
Reference := QualId [AccessExp] [[’::’ ’(’ Exp ’)’] ’:>:’ ’(’ Exp ’)’]
AccessExp := ((’[’ Exp ’]’) | (’(’ MethodCallParam ’)’))

{((’[’ Exp ’]’) — (’(’ MethodCallParam ’)’)) }
[’.’ Identifier { ’.’ Identifier} AccessExp]

QualId := [’self’ ’.’] Identifier { ’. Identifier’}
MethodCallParam := [Exp { ’,’ Exp}]
ActionBlock := ActionBlockPar { ’//’ ActionBlockPar}
ActionBlockPar := ActionBlockSeq { ’[]’ ActionBlockSeq}
ActionBlockSeq := [’var’ BlockVarList [���

�’&’ Exp] ’:’]
ActionBlockParen { ’;’ ActionBlockParen}

ActionBlockParen := (’(’ ActionBlock ’)’) | (AnonOrNamedAct)
AnonOrNamedAct := DiscreteActionBody | ’skip’ |

Identifier [’(’ MethodCallParam ’)’] [’:>:’ ’(’ Exp ’)’]
BlockVarList := BlockVar { ’; BlockVar’}
BlockVar := Identifier ’:’ ComplexType
ASTypeComp := ASTypeCompPar { ’//’ ASTypeCompPar}
ASTypeCompPar := ASTypeCompSeq { ’[]’ ASTypeCompSeq}
ASTypeCompSeq := ASTypeCompBP
ASTypeCompBP := (’(’ ASTypeComp ’)’)
BinOperator := (’<=>’) | (’>’)| (’>=’)| (’<’)| (’<=)’)| (’=’)| (’<>’)| (’=>’) | (’-’)| (’+’)

| (’or’)| (’and’)| (’/’) | (’div’) | (’*’) | (’mod’) | (’^’)
Identifier := Letter {Letter | Digit}
Num := [’+’ | ’-’] Digit { Digit }
FloatNum := [’+’ | ’-’] Digit { Digit } ’.’ Digit {Digit} [’e’ | ’E’ [’+’ | ’-’] Digit { Digit }]
Letter := ’$’ | ’ ’ | ’A’..’Z’ | ’a’..’z’
Digit := ’0’..’9’

18

4 Incomplete Features

The following features are supported by the grammar, but do not produce executable or
useful code.

4.1 Sequential Block Expression

In the do od-block when calling an action with a variable it is possible to add an
additional guard. However if the guard is true, the produced Prolog-Code will not work.

Example:

do

var A : SmallInt & A < 3 : push(A)

od

4.2 String

It is possible to assign a string to a variable of any list type of char.
Example:

var

my_string : list[20] of char = [0]

actions

obs fill = requires true :

my_string := "Hello World!"

end

However, in the produced Prolog-Code the characters stored in the list are not of type
char, but instead Prolog atoms. This may lead to strange behaviour.

5 CADP Target

5.1 The Argos CADP-Target

The CADP-Target is an Add-On for Argos. It produces C files for the use with the
CADP toolbox available at http://www.inrialpes.fr/vasy/cadp/. It is deployed as
dynamic library with the file name ArgosCadpTarget.dll. If this file is present an
additional Argos option -c is available.

The invocation of Argos to produce C files for CADP is very similar to the invocation
of Argos to produce prolog files for Ulysses. Instead of using the option -p one has to
use the option -c and the options -n and -d should be omitted as they are meaningless
in this context.

19

5.2 Generating BCG

The generated C file can be used to produce a graph in CADP’s proprietary BCG format.
This is done by compiling the file against CADP’s tools using the cadp cc compiler.

Given a shell with the environment variables $CADP set to the CADP directory and
$ARGOS set to the Argos directory one can compile an Argos generated C file model.c

into an object file model.o using the following command:

$CADP/src/com/cadp_cc -g3 -O0 -I. -I$CADP/incl -I$CADP/src/open_caesar \

-I $ARGOS/trunk/src/cadp/cadpruntime/ -c model.c -o model.o

Now the generator from the CADP toolbox can be compiled using the command:

$CADP/src/com/cadp_cc -g3 -O0 -I. -I$CADP/incl -I$CADP/src/open_caesar \

-c $CADP/src/open_caesar/generator.c -o generator.o

Finally the two object files can be linked into an executable using the command:

$CADP/src/com/cadp_cc generator.o model.o -o generator \

-L${BCG:-$CADP}/bin.‘$CADP/com/arch‘ -lcaesar -lBCG_IO -lBCG -lm

5.3 Animator

For debugging purposes Argos provides a so-called Animator that enables one to walk
step wise through a model. The models can be either encoded as graphs in aut files or
as dynamic link library compiled from an Argos generated C file. The compilation can
be done using any C compiler that is capable of generating dynamic link libraries for 32
bit Windows platforms.

However, compiling the model to a dynamic link library can be a little bit tricky, so a
solution file for Microsoft Visual Studio 2008 can be found in the argos source directory
or to be exact in the sub-directory cadp/model. Unfortunately some paths in this file
are absolute, so they have to be changed to match the paths that are actually used.

This can be done by a right-click on model within the Solution Explorer. Now a model
Property Pages window pops up, providing an element Configuration Properties. This
element can be expanded, and C/C++ has to be chosen. The first entry of this page,
called Additional Include Directories has to be changed to fit.

6 Alarm System

6.1 Overview

In this section a model of a Car Alarm System is presented. The purpose is to show how
Object-Oriented Action Systems can be used to model real world system in contrast to
the examples presented so far. The Car Alarm System has been a demonstrator in the
MOGENTES project. The specifications were provided by Ford. This demonstrator was
also used in [1].

20

6.2 Requirements

In [1] the specification was condensed to the following three requirements:
R1: Arming. The system is armed 20 seconds after the vehicle is locked and the

bonnet, luggage compartment, and all doors are closed.
R2: Alarm. The alarm sounds for 30 seconds if an unauthorized person opens the

door, the luggage compartment, or the bonnet. The hazard flasher lights will flash for
five minutes.
R3: Deactivation. The CAS can be deactivated at any time, even when the alarm

is sounding, by unlocking the vehicle from outside.

6.3 State Chart

In [1] a UML transformation tool was used to generate an Object-Oriented action system.
The paper contains a state chart which is cited in Figure 8. In contrast the action system
presented in this manual was written by hand but it is somehow based on this State Chart
regarding the interpretation of the requirements.

AlarmSystem_StateMachine

Alarm
Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

Figure 8: State Chart of Car Alarm System

21

6.4 Object-Oriented Action System

6.4.1 Interface

In the context of generating labeled transition systems for Ulysses the interface of an
Object-Oriented action system consists of named actions. According to the ioco theory,
labels have to be marked as either input or output. In Object-Oriented action systems
the corresponding keywords are ctr resp. obs.

Therefore the interface of the Car Alarm System consists of 4 controllable actions
Close, Open, Lock and Unlock. In the context of the implementation these actions
correspond to the input coming from various sensors. In the context of a generated test
case these actions correspond to outputs to the System Under Test.

Also there are 6 observable actions ArmedOn, ArmedOff, SoundOn, SoundOff, FlashOn,
and FlashOff. In the context of the implementation these action correspond to output
that triggers the resp. signals to the environment. In the context of the generated test
cases these actions correspond to the expected inputs coming from the System Under
Test.

6.4.2 Time Handling

One important aspect of modeling such a system is time handling. In former models
within the MOGENTES project passing of time had been modeled by introducing an
observable action after. Later in the project this caused some problems as some test
cases were not generated.

To solve these problems the after action in this model is removed. Instead, elapsed
time is now encoded as first parameter of every remaining action.

6.4.3 Protocol Layer

In the context of model-ling an embedded system the do od-block can be thought as
protocol layer. To keep the model simple, the most canonical form of the do od-block
has been used. That is, all named actions are connected using the non-deterministic
choice. Since the named actions are parametrized, enumeration is used. Unfortunately
the size of the state space grows exponentially by number of enumerated values, so it
is very important to keep the resp. ranges as small as possible. In the context of this
model, where the meaning of each action’s parameter is the elapsed time, this means
that only “interesting” time periods are considered. Actually, “interesting” events only
happen immediately, 20, 30 or 270 seconds after the previous event. Exactly these values
are contained in the Enum Type TimeSteps.

6.4.4 Non-determinism

This model makes use of non-determinism. That means that there are situations in
which the system can choose how it responses to a certain input. More technically that
means, that there sequences of controllable and observable actions, after which there is
more than one observable action. In the context of using the model to specify a system

22

that means underspecification. A system can choose among some possible options how
to react.

In this particular model, non-determinism is used so that the implementation has some
freedom with regards to the exact sequence of observable actions. For example when an
intrusion is detected by the alarm system, then three events happen immediately: The
arming is set off, the sound alarm is set on and the flash alarm is set on. A deterministic
system would specify the exact order, in which these actions must be triggered. In the
context of test case generation this could lead to some false positives, as the requirements
do not specify a fixed order.

6.4.5 Code

1 types
2 TimeSteps = { Int0 = 0 , Int20 = 20 , Int30 = 30 , Int270 = 270} ;
3 Int = in t [0 . . 2 7 0] ;
4 Smal l Int = in t [0 . . 3] ;
5 AlarmSystem = autocons system
6 | [
7 var
8 open : bool = true ;
9 l ocked : bool = fa l se ;

10 armed : bool = fa l se ;
11 soundAlarm : bool = fa l se ;
12 f lashAlarm : bool = fa l se ;
13 b lock ingLeve l : Smal l Int = 0 ;
14 armedOnNow : bool = fa l se ;
15 armedOnLater : bool = fa l se ;
16 armedOff : bool = fa l se ;
17 soundOn : bool = fa l se ;
18 soundOffNow : bool = fa l se ;
19 soundOffLater : bool = fa l se ;
20 f lashOn : bool = fa l se ;
21 f lashOffNow : bool = fa l se ;
22 f l a s hO f fLa t e r : bool = fa l se ;
23 s i l e n t : bool = fa l se # true after alarms turned o f f
24 actions
25 ctr Close (waitt ime : Int) =
26 requires not f lashAlarm and not soundAlarm :
27 requires open and waitt ime = 0 and b lock ingLeve l = 0 and l ocked and

s i l e n t :
28 open := fa l se ;
29 b lock ingLeve l := 1 ;
30 armedOnNow := true ;
31 s i l e n t := fa l se
32 end []
33 requires open and waitt ime = 0 and b lock ingLeve l = 0 and not locked and

s i l e n t :
34 s i l e n t := fa l se ;
35 open := fa l se
36 end []
37 requires open and waitt ime = 0 and b lock ingLeve l = 0 and l ocked and not

s i l e n t :
38 open := fa l se ;
39 b lock ingLeve l := 1 ;
40 armedOnLater := true
41 end []
42 requires open and waitt ime = 0 and b lock ingLeve l = 0 and not locked and

23

not s i l e n t :
43 open := fa l se
44 end
45 end ;
46 ctr Open (waitt ime : Int) =
47 requires true :
48 requires not open and waitt ime = 0 and b lock ingLeve l = 0 and not armed :
49 open := true
50 end []
51 requires not open and waitt ime = 0 and b lock ingLeve l = 0 and armed :
52 open := true ;
53 armed := fa l se ;
54 b lock ingLeve l := 3 ;
55 armedOff := true ;
56 soundOn := true ;
57 f lashOn := true
58 end
59 end ;
60 ctr Unlock (waitt ime : Int) =
61 requires true :
62 requires l ocked and waitt ime = 0 and b lock ingLeve l = 0 and not

f lashAlarm and soundAlarm :
63 l ocked := fa l se ;
64 s i l e n t := fa l se ;
65 soundOffLater := fa l se ;
66 soundOffNow := true ;
67 b lock ingLeve l := 1
68 end []
69 requires l ocked and waitt ime = 0 and b lock ingLeve l = 0 and f lashAlarm

and soundAlarm :
70 l ocked := fa l se ;
71 f lashOffNow := true ;
72 b lock ingLeve l := 2 ;
73 s i l e n t := fa l se ;
74 soundOffLater := fa l se ;
75 soundOffNow := true
76 end []
77 requires l ocked and waitt ime = 0 and b lock ingLeve l = 0 and not

f lashAlarm and not soundAlarm :
78 l ocked := fa l se ;
79 s i l e n t := fa l se ;
80 armedOff := true ;
81 b lock ingLeve l := 1
82 end []
83 requires l ocked and waitt ime = 0 and b lock ingLeve l = 0 and f lashAlarm

and not soundAlarm :
84 l ocked := fa l se ;
85 f lashOffNow := true ;
86 f l a s hO f fLa t e r := fa l se ;
87 b lock ingLeve l := 1 ;
88 s i l e n t := fa l se
89 end
90 end ;
91 ctr Lock (waitt ime : Int) =
92 requires true :
93 requires not locked and waitt ime = 0 and b lock ingLeve l = 0 and open :
94 l ocked := true
95 end []
96 requires not locked and waitt ime = 0 and b lock ingLeve l = 0 and not open

:
97 l ocked := true ;
98 b lock ingLeve l := 1 ;

24

99 armedOnLater := true
100 end
101 end ;
102 obs ArmedOn (waitt ime : Int) =
103 requires (armedOnNow or armedOnLater) :
104 requires (waitt ime = 20 and armedOnLater) :
105 armedOnLater := fa l se ;
106 b lock ingLeve l := b lock ingLeve l − 1 ;
107 armed := true
108 end
109 [] requires (waitt ime = 0 and armedOnNow) :
110 armedOnNow := fa l se ;
111 b lock ingLeve l := b lock ingLeve l − 1 ;
112 armed := true
113 end
114 end ;
115 obs ArmedOff (waitt ime : Int) =
116 requires (waitt ime = 0 and armedOff) :
117 armedOff := fa l se ;
118 b lock ingLeve l := b lock ingLeve l − 1 ;
119 armed := fa l se
120 end ;
121 obs SoundOn (waitt ime : Int) =
122 requires true :
123 requires (waitt ime = 0 and soundOn and b lock ingLeve l = 1) :
124 soundOn := fa l se ;
125 b lock ingLeve l := b lock ingLeve l − 1 ;
126 soundAlarm := true ;
127 soundOffLater := true
128 end []
129 requires (waitt ime = 0 and soundOn and b lock ingLeve l <> 1) :
130 soundOn := fa l se ;
131 b lock ingLeve l := b lock ingLeve l − 1 ;
132 soundAlarm := true
133 end
134 end ;
135 obs SoundOff (waitt ime : Int) =
136 requires (soundOffNow or soundOffLater) :
137 requires (waitt ime = 30 and soundOffLater) :
138 soundOffLater := fa l se ;
139 f l a s hO f fLa t e r := true ;
140 soundAlarm := fa l se
141 end
142 [] requires (waitt ime = 0 and soundOffNow) :
143 soundOffNow := fa l se ;
144 b lock ingLeve l := b lock ingLeve l − 1 ;
145 soundAlarm := fa l se
146 end
147 end ;
148 obs FlashOn (waitt ime : Int) =
149 requires true :
150 requires (waitt ime = 0 and f lashOn and b lock ingLeve l = 1) :
151 f lashOn := fa l se ;
152 b lock ingLeve l := b lock ingLeve l − 1 ;
153 f lashAlarm := true ;
154 soundOffLater := true
155 end []
156 requires (waitt ime = 0 and f lashOn and b lock ingLeve l <> 1) :
157 f lashOn := fa l se ;
158 b lock ingLeve l := b lock ingLeve l − 1 ;
159 f lashAlarm := true
160 end

25

161 end ;
162 obs FlashOff (waitt ime : Int) =
163 requires (f lashOffNow or f l a s hO f fLa t e r) :
164 requires (waitt ime = 270 and f l a s hO f fLa t e r) :
165 f l a s hO f fLa t e r := fa l se ;
166 f lashAlarm := fa l se ;
167 s i l e n t := true
168 end
169 [] requires (waitt ime = 0 and f lashOffNow) :
170 f lashOffNow := fa l se ;
171 b lock ingLeve l := b lock ingLeve l − 1 ;
172 f lashAlarm := fa l se
173 end
174 end
175 do
176 var A : TimeSteps : Close (A) []
177 var B : TimeSteps : Open (B) []
178 var C : TimeSteps : Lock (C) []
179 var D : TimeSteps : Unlock (D) []
180 var E : TimeSteps : ArmedOn (E) []
181 var F : TimeSteps : ArmedOff (F) []
182 var G : TimeSteps : SoundOn (G) []
183 var H : TimeSteps : SoundOff (H) []
184 var I : TimeSteps : FlashOn (I) []
185 var J : TimeSteps : FlashOff (J)
186 od
187] |
188 system
189 AlarmSystem

6.5 Labeled Transition System

In Figure 9 you can find a graphical representation of labeled transition system that
corresponds to the Object-Oriented action system. It is a ioco product graph produced
by Ulysses. So there is an additional observable action delta that denotes quiescence.
Iff in a given state the system has no specified output, there is a self loop labeled with
delta.

Acknowledgements

Funded by the European Artemis Joint Undertaking project MBAT, Combined Model-
based Analysis and Testing of Embedded Systems and by the Austrian Research Pro-
motion Agency (FFG), program line “Trust in IT Systems”, project number 829583,
TRUst via Failed FALsification of Complex Dependable Systems Using Automated Test
Case Generation through Model Mutation (TRUFAL).

26

Figure 9: Labeled Transition System

27

References

[1] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. UML
in action: A two-layered interpretation for testing. In UML&FM, ACM Software
Engineering Notes (SEN), 2010. in press.

[2] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to object-
orientation in action systems. In Mathematics of Program Construction, LNCS 1422,
pages 68–95. Springer, 1998.

28

